Limits To Growth

Ecology and the Entropy Law

Saral Sarkar

A few weeks ago, I read an amusing (though saddening) correspondence between two professional economists: HF, a sustainability economist, and Dr. C, an ecological economist:

HF had criticised Dr C for not even mentioning the name of Nicolas Georgescu-Roegen in his book on a green economy. Dr C replied: “Naturally, Georgescu-Roegen, who had been honoured with the Nobel Prize for his work on the subject, is known to us.” But, while writing a book, one cannot mention every relevant author etc.

Thereupon; HF thanked Dr C for his kind reply, but added, inter alia: “…. Please allow me the following comment on your knowledge about Georgescu-Roegen: The remarkable, in order not to say the grotesque, point here is that Nicolas Georgescu-Roegen, as pioneer of ecological economics, was not even regarded by the committee in charge as deserving of receiving this honour.”

This triggered off the following pages from my memory:

Who is this late Nicolas Georgescu-Roegen (in the following, NGR)? Among environmental activists and ecologically interested persons, there are very few, who not only came across the name but also read his main book Entropy Law and the Economic Process and some of his other writings. I guess, not all professional economists nor all who studied economics at the university level have heard a lecture on his theory and his views. They might be of interest and useful, even very important for the very frustrated young environmental and climate activists of today and those who are associated with them in groups like Fridays for Future, X’tinction Rebellion, Last Generation etc. So let me try to make a simple presentation thereof. Not being a good writer, let me try it in the style of a grandfather telling a story from his young days to his grandchildren. I am after all 87 years old and the activists of Fridays For Future etc. could be my grandchildren. I hope my readers will excuse me the inexactitudes and the paltry reference details.

I was nine or ten years old when the following occurred: We were then living in a village in West Bengal (India). We were six children; I was the fifth of them. One day, I and my immediately elder brother were standing alone in front of one of the many ponds that southern West Bengal villages generally have. My brother Dilip, although barely one-and-a half years older, was much smarter than I, who was reputed in our family to be the simpleton of the lot.

 Now, I had a question that was troubling me for many days, and I thought Dilip might be interested. The question that troubled me was as follows: My parents were two in the beginning, and then we six children came. I asked Dilip: How can it work?: Originally my father’s salary must have sufficed for him and his wife, my mother. It was a two-member family. But then, within 12 years, it became an eight-member family.

Dilip was really smart. He said: You are stupid. Look at this pond. Four months ago, in April, the pond had this little water (he showed the then water level with his fingers). And now? Look at it after five months, it is full. Millions of rain drops fell from the sky in the pond; they will vanish again. No problem. This happens every year. I understood the logic of his example. I fell quiet, but I was not really satisfied. I could not understand the similarity between the pond and the growth of our family.

 Decades later, I would understand it. Dilip was talking of a sustainable system, whereas I was perturbed by the exponential growth of an unsustainable one. Little did I know then that we were discussing one of the big issues of ecology and economy.

The same question came up in college where I had political economy as one of my subjects. One day, the lecturer was teaching us about the Malthusian theory of population. You should know it, in the 1950s; India was a very poverty-stricken country. I could see it in the village where we lived in my childhood as well as in Calcutta, where we lived in the 1950s. I was seventeen years old, and Calcutta was in the 1950s a hotbed of leftist politics. All kinds of communist and socialist parties had a strong following there. And the social science and humanities faculties of our college were full of communist and Marxist lecturers. As expected, this particular lecturer rejected the Malthusian theory of population. I remember only one sentence of his lecture: “A man is not only born with a mouth, but also with two hands.”

 In those days, at the impressionable age of 17, in a poverty-stricken huge country like India, it was impossible for a young person not to be influenced by communism and Marxism, particularly in Calcutta. I absorbed much Marxist and socialist/communist ideology. But I was not satisfied with the Marxist rejection of Malthus. Much later, I thought, Marx simply was obstinate, unjust to another thinker who had expressed one part of the truth about the human condition. But the 1950s, also the 1960s, were the era of faith in eternal progress, development, and miracles that science and technology were bringing to us, also in India.

That faith was shattered in the 1970s.

I did not become an economist, or a political scientist. I studied German, also in Germany, and became a lecturer in German in Hyderabad, a large city in South India. Once, in the late 1960s or early 1970s, a famous actor and dramaturge of the Bengali stage happened to be in Hyderabad. The man was also known as an intellectual. So the Bengalis of Hyderabad invited him to speak at a meeting of theirs, on whatever he wanted to speak. It was an intellectual rambling talk. But one thing that I still remember from that talk is as follows:

ShambhuMitra–that was the name of the famous actor–said in the course of his talk: he had recently read a very interesting small book, actually a lecture, by a British intellectual called C P Snow. In the lecture entitled The Two Cultures, Snow regretted the fact that in his country, generally, scientists had no interest in literature and humanities and littérateurs generally ignored the sciences, that there was hardly any exchange of thoughts between the two groups of intellectuals. Snow called upon the two elite groups to be more interested in the thinking of each other. He said, in the general sense, to be more effective in their role as the elite of the country, “not only should a professor of physics read some works of Shakespeare, but also a professor of any of the humanities should e.g. know what the Second Law of Thermodynamics says.” (in exact quotation–SS)

 I had thought I belonged to the educated elite of India, and I did not know what the Second Law of Thermodynamics was. I wanted to know something about it. In the early 1970s, there was no computer in India and also no Wikipedia. So I began asking my students, many of whom were Engineers or students of engineering; among them were also some lecturers in physics. But none could give the answer. They mostly said, they had heard of it, but it was not so important for their studies, or for their future profession. After some failed tries, I met a geophysicist who seemed to know what it was. But he was in a hurry then. He said: O, if you want to know that, you must first learn what entropy is and he went away. And all the time I was asking myself why it should be so important for me to know what these things said. I understood it a few years later.

In 1972 or 1973, I read the famous book Limits to Growth (Meadows et al.), the first report to the Club of Rome. That was a shock for me, just as it was for many who had all along been talking of economic development, progress, scientific development, socialism, capitalism with a humane face and things like that. I thought, if what the book says is true, then nothing will help. No amount of scientific discoveries and inventions, no amount of planning will help, if the essential resources are limited and exhaustible.

But was all that true? There were many who refused to be perturbed. To take just one example: Prof Beckerman, the head of the faculty of economics at the University of Oxford, wrote that the minerals contained in the top one mile of the Earth’s crust would suffice for continuous economic growth for the next 100 million years. Others wrote about the possibilities of substituting rare resources with more abundant ones. More optimistic people thought of 100 percent recycling of exhaustible resources. In sum, the vast majority of economists and experts in relevant fields, as well as men in the street, refused to share the view that there are limits to economic growth.

I also read the protocol of a meeting of relevant Soviet scientists attached to the highest political bodies of the state. They agreed with Meadows et al. so far as facts and analyses were concerned. They agreed it was a problem, the limits, but they criticised the authors for not considering that a socialist society approaches the problem in a different way than a capitalist one. They did not elaborate, in which different way.

 So far as energy was concerned, nobody disputed that the fossil fuels or fissionable materials such as uranium and thorium were exhaustible. And everybody agreed that spent energy cannot be recycled. But the main problem with nuclear power plants was more the risk of nuclear accidents and radioactive pollution than exhaustibility of the resources. The only question here was whether the risks were acceptable or not. From 1974 onwards (e.g. in Wyhl, Germany), there was vehement opposition from the people to construction of further nuclear power plants. Also the huge construction costs of such plants and the necessary safety measures were a strong deterrent.

So what was the solution of the energy problem that the optimists came forward with? Fossil fuels were out, because they were not only exhaustible but, also polluting and responsible for global warming, power from nuclear fission was too risky and too costly. Nuclear fusion power was (is) not developed yet. Deforesting the whole world for wood as source of energy was not a proposition at all.

The kinetic energy of wind and the heat (warmth)-energy of sunshine are known to humans from time immemorial–both resources are inexhaustible (renewable) and nonpolluting. Also producing electricity from them is possible. For some decades now, all kinds of environmentalists and Greens have been proposing an ecological economy based mainly on electricity produced by means of these two resources. Today, “clean energy,” “decarbonisation“ of the economy, “green hydrogen”, “energy transition”, “green growth”, “hundred percent renewables”, “sustainable development” etc. have become buzz words, articles of faith, so to speak, though actually, till now, they are largely mere slogans.

These propositions were so attractive that at first, that is, in the early 1980s, I too superficially thought that it was a plausible idea. But soon doubts also started cropping up. If these were not mere slogans, but hopes with substantial scientific justification, then why were some activists still advocating for natural gas as a fuel to replace coal? Natural gas is of course a lesser evil than coal and oil, but it is a fossil fuel nonetheless. Or why were some reputed environmental scientists, such as the late James Lovelock of Gaia fame, advocating for more nuclear energy, and not wind energy, to replace fossil fuels in the UK?1

In the mid1980s, finally, I found a popular science book entitled Entropy written by Jeremy Rifkin. In this book I also found a reference to a scientific paper of NGR on the question of solar energy, 2 which had, in 1978, when the paper had been written, not yet become an article of faith of all environmentalists and Greens. I read the paper as soon as I got it. In it, NGR drew a distinction between feasibility and viability, and came to the conclusion that solar electrical energy is of course feasible, but it is not viable. I cannot here quote the whole paper of NGR. But there is space here for a few short passages–from NGR’s original paper and my book,3 in which I have summarised his argument. NGR, who had, for this paper, examined the case of solar energy produced with aluminum collector technology, wrote (paraphrased by SS): Can the second generation of solar power plants be built using the solar energy produced by the first generation? NGRs answer was no, at least not yet. A viable technology is one that is capable of “reproducing” itself after it has been brought into existence by means of an earlier technology. Illustrating the point, he writes: “The first bronze hammer ….was produced by some stone hammers. However, from that moment on, all bronze hammers were hammered only by bronze hammers.” (NGR1978: 18). To take an illustration from the energy sector, the first ton of coal was extracted by using human and animal muscle power. But soon, machines driven by coal energy were producing the capital equipment necessary to extract coal, and such equipment was itself to be driven by coal energy. This is not the case with solar energy. All the necessary equipment, including solar collectors,are produced through processes based on sources of energy other than the sun (coal, oil, uranium etc.). Solar energy is, therefore, feasible only so long as other sources of energy are available. That means it is not viable.

Later, when photovoltaic solar energy started dominating the scene, the argument remained the same. They are feasible, but not viable. Currently, we know that 70 percent of all photovoltaic-panels sold in the world are made in China, where coal is by far the greatest source of energy, not the sun (nor wind or flowing water).

Same is the case with electricity from wind energy. The turbines, rotor blades, concrete towers etc.–are all produced with energy based mainly on conventional sources.

I have dealt with the subject in numerous articles, all published on my blog-site.4 So there is no need to elaborate on it any further. To sum up, according to NGR, it may be impossible to solve the problem, for the intensity of solar radiation reaching ground level is extremely low. And neither sunshine nor blowing wind is available all the time.

Here enters the Second Law of Thermodynamics (often also called the Entropy Law).5 In and on the surface of the sun, the temperature is unimaginably high. But when it reaches the surface of the earth, it is extremely low. What happens is that on its way to the earth solar radiation (sunshine) dissipates, its entropy increases. In order to make it useable for producing electricity, we have to collect (concentrate) the dissipated solar radiation–by means of aluminum mirrors or photovoltaic solar panels. These and all the related equipment from A to Z has first to be produced, for which energy from other sources has to be spent, the quantity of which is usually more than what is finally produced by the solar thermal and photovoltaic power plants. That means their energy balance is negative. Same is the case with wind electricity.

NGR pointed out that when we use matter (materials) for any purpose, it also undergoes entropy increase. In common parlance, we call it wear and tear. In industrial production processes it leads to waste production. Waste can of course be recycled, but that again requires expenditure of energy. Moreover, some part of the matter always gets irretrievably dissipated, which is why hundred percent recycling is never possible.

All scientists agree that the Entropy Law is a universal law, and that it can never be overridden. It is having its effect everywhere, even in societies as a whole. Much later, I read a book entitled Social Entropy by Manfred Wöhlke, where the author maintains that it is the Entropy Law that is in effect when we observe that formerly well-functioning cohesive societies are breaking down (dissipating, so to speak) and states becoming failed states.

I also read in the 1980s a debate in the pages of The Ecologist–in those days the leading theoretical journal of the ecologists and environmental activists–in which Edward Goldsmith (the editor of the journal and a leading writer on ecological issues) tried to refute the universality and incontrovertibility of the Entropy Law that NGR was asserting. Goldsmith gave the example of plants which sprout by themselves from the soil after the previous generation dies away.

To Goldsmiths “refutation” NGR replied that plants do not reproduce themselves through any mystical unending source of energy, but that it is the suns’ energy that is enabling them as well as any life that exists, not only to live, but also to reproduce themselves, and that the life process would end when the sun dies out due to the effect of the Entropy Law. NGR had entitled his main theoretical book The Entropy Law and the Economic Process (1971).

In the 1960s and 1970s, when NGR wrote his main theoretical book and the papers that I could read, his focus was on the non-renewability and hence exhaustibility of the resources that we need. He calls the supplies of non-renewable energy sources and other minerals in low-entropy state “the limited dowry of mankind’s existence on earth”. A dowry is not only a limited but also a one-offgift, Therefore, Georgescu-Roegen comes to the logical conclusion:

 “Even with a constant population and a constant flow per capita of mined resources, mankind's dowry will ultimately be exhausted if the career of the human species is not brought to an end earlier by other factors.” (1971)

By “other factors” he must have meant a nuclear war between the superpowers. Global warming was not a matter of concern until the second half of the 1980s. But today, as we know, scientists are afraid that due to global warming and climate change the Earth may soon become an “uninhabitable planet”–title of a three to five years old book. But the resource problem has not disappeared. I think it cannot be solved, for our whole present-day economy has been built up and is running on the basis of mined resources, all of which, especially the fossil fuels, will ultimately be exhausted sooner or later.

 On the prospect of mankind on the Earth, NGR wrote in a fit of pessimism,

"Will mankind listen to any programme that implies a constriction of its addiction to exosomatic comfort? Perhaps the destiny of man is to have a short, but fiery, exciting and extravagant life rather than a long, uneventful and vegetative existence. Let other species–the amoebas, for example–which have no spiritual ambitions inherit an earth still bathed in plenty of sunshine." (1972)

I think NGR has here made a small mistake. What will come to an end is not exactly the career of the human species on the Earth, but that of the industrial society. The human species is living on the planet since before any resources were mined.

Notes :
1.    See also my article. The Ecological Clarity that the Ukraine War brings–A Paradox and Its Explanation on my blog site.(see note No. 4)
2.   Nicolas Georgescu-Roegen: Technology Assessment: The Case of the Direct Use of Solar Energy.
3.   Saral Sarkar: Eco-Socialism or Eco-Capitalism.
4.   My blog site: http//eco-socialist,
5.   "The second law of thermodynamics says that entropy always increases with time". (quote from internet).

I prefer to use the term Entropy Law, for the term thermodynamics may erroneously suggest that the law applies only to heat transmission. But, as NGR pointed out elsewhere, dissipation inevitably occurs also when we use matter (materials) for any purpose.

Back to Home Page

Vol 56, No. 27, Dec 31 2023 - Jan 6, 2024